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Root Rotation and Plastic Work Effects 
in the Peel Test* 

J. G .  WILLIAMS 

Department of Mechanical Engineering, Imperial College of Science, Technology & Medicine, 
Exhibition Road, London SW7 2BX, UK 

(Received September 30, 1992; in final form March 8, 1993) 

A review of the analysis to determine the global energy release rate in the peel test is given. The local 
bending at the root is then analysed using large displacement elastic beam theory and the role of the 
beam root rotation in partitioning the energy between bending and direct transmission is demonstrated. 
The analysis is further refined using an elastic-plastic solution incorporating a model for predicting the 
root rotation. The resulting solution appears to predict observed variations in peel energy with thickness 
and angle. 

KEY WORDS large displacement elastic analysis; elastic-plastic analysis; model for predicting root 
rotation; global energy analysis; energy loss on bending. 

1. INTRODUCTION 

Peel testing has a long history [e.g.  Refs. 1-61 and has been subjected to a wide 
range of analyses. It arose originally from that school of fracture mechanics derived 
directly from the work of Griffith and used to study the fracture of r ~ b b e r . ~ . ~  The 
large, non-linear elastic deformations led to a need for testing configurations which 
could be calibrated directly and such a test was the “trouser-leg’’ tear test shown in 
Figure 1. Tearing was observed to be at constant force, F, and the displacement of 
that force was seen to be twice the tear growth so that the energy per unit area, G, 
was thus given by: 

G = -  2F 
h 

Any elastic deformations were usually small for the loads used and gave insignifi- 
cant errors. It was recognised that the local conditions at the tear might be rather 
complex but concluded that equation (1) gave a fair measure of the energy to cause 
fracture. Since rubber was used, no problems of dissipating energy in the arms of 
the specimens were considered. 

*One of a Collection of papers honoring A. J .  Kinloch, the recipient in February 1992 of The Adhesion 
Society Award for Excellence in Adhesion Science, Sponsored by 3 M .  
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226 J .  G. WILLIAMS 
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FIGURE 1 The “trouser leg” tear test. 

The 90” peel test shown in Figure 2 is a direct derivative of the above and, for a 
width b,  we have external work done for a debonding of length da of 

P.da 

giving a new area of b.da and hence 

G = -  P 
b 

Again, any local effects or elastic deformations are ignored and the analysis has 
been very successful for evaluating the adherence of flexible elastic tapes. 

Possible problems were identified when highly extensible rubbery strips were 
used’ and refinements were introduced into the analysis to correct for the large 

P 

FIGURE 2 The 90” peel test. 
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ROTATION AND PLASTIC WORK IN PEEL TEST 227 

elastic deformations. However, when the method was used for other polymers, 
there was some doubt over the problems of energy dissipation in the arms. Such 
concerns came about when laminated plastic packaging materials were analysed 
for inter layer adhesion. Similarly, the electronics industry has increasingly used 
laminates of plastics and metals and again used peel tests to evaluate adhesion. 
Here, the obvious plastic deformation of the metals have raised doubts about the 
analyses. These doubts have prompted studies using different peeling angles and 
different thicknesses of both adhesive and adherend. The results, and attempts to 
rationalise them, have been far from clear. This paper revisits some of the analyses 
used and some of the  experimental results in an attempt to throw light on the 
problem. 

2. THE GLOBAL ANALYSIS 

The energy release rate for any system may be calculated from"' 

G=- due,, dUs dUd-dUk 
b d a  b d a  bda  b d a  (3) 

where U,,, is the external work done, 
U, is the strain energy, 
Ud is the dissipated energy, 
Uk is the kinetic energy, 

and b.da is the fracture area created by a crack growth of da for a uniform width 
assumed here. 

If we consider the general case of the peel test with a constant load at an angle, 
0,  as shown in Figure 3, it is of interest to take the limiting case of a flexible but 
inextensible strip. For a strip originally in the horizontal position, the displacement 
of the load point A has the components 

u = a( 1 - cos 8) and v = a sin 8 

and the movement of the load point in  the direction of the load is a(1-cos 0).  
Thus, for a delamination distance of da, the load point moves da(1 -cos 0) and 

f 0 c) 
U 

FIGURE 3 The general peel test. 
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228 J. G. WILLIAMS 

For the material properties assumed here, Us = Ud = 0 and for the static case Uk = 0 
also, and hence 

the well-known result. 

and 

P G = -( b 1 - cos e) 

A dynamic solution may be derived easily here, since 

m=~ph(U2+ii’)=pha2(1-cos8) b d a  2 

G =  (: --pha *’I (1-case) 

If G, is the fracture resistance, then the critical value of P is 

G,b P, = 1 -COS e 
and, for P>P,, the delamination speed for G = G, is 

It is thus possible to account for the dynamic behaviour of such a system including 
unstable crack growth [e .g .  Ref. 111. 

If the strip is assumed to be linearly elastic, then the load P induces a strain given 
by 

e = (&); 
where E is Young’s modulus. The displacement of the load point is now 

a ( l - cose+e)  

and the change in strain energy is 

6=- dU Ehe’ 
b d a  2 

and hence 

2 1 P 
b G=-(1 -cos 8 (9) 

In most cases, e2/2<e(1 - cos O ) ,  though for highly elastic systems it is necessary to 
make  correction^.^ It should be noted here that extra external work is done by 
stretching the strip by a e and that, for this sustained load case, the change in Us is 
the energy put into the increase in length da. For the same constant load condition, 
we may now consider any stress-strain relationship which may include dissipation. ‘ I  

If there is a strain, e ,  in the strip, then 

dU 
b d a  b =g(1-  cos 0 + e> 
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ROTATION AND PLASTIC WORK IN PEEL TEST 229 

as before, and 

with 

P 
b h  

(T=- 

and hence 

a ( l -cosO)+ue-  
0 0 

Although there may be energy dissipated in the strip, G is still increased because the 
external work via the constant load provides the necessary energy. For an elastic- 
perfectly plastic material with a yield stress of uy, we have 

G = h  2E 

i . e .  the elastic result limited by the yield strain ey = uy/E. The actual strain may be 
much greater than ey but G cannot be greater than that given in equation (11). 

It should also be noted that the second term in equation (10) becomes predomi- 
nant for 0 = 0 ,  but this case is not really a peel test but rather an axially loaded 
strip.'' For all significant values of 0 ,  which constitute a true peel test, the first term 
arising from external work is predominant. 

3. LOCAL MOMENT ELASTIC SOLUTIONS 

Explanations for some very complex behaviour that has been observed in peel tests 
have been sought in the analysis of the region near the base of the strip where it is 
stuck down [e.g. see Ref. 61. If it is assumed that the slope at the contact point is 
zero, then the geometry is as shown in Figure 4. If we assume that all the energy 
release is transmitted via bending, then we may compute the moment at the base, 
M,, by equating the local G to that applied; i .e .  

P 6Mi 
b Eb'h' G=- ( l  -cos 0) =- 

i. e.  

2 - Ebh3 M, - -P( 1 - cos 0)  6 

The maximum bending strain is given by 

eB=& 6M = d 6 e (  1 - cos 0) 
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230 J .  G .  WILLIAMS 

P 

FIGURE 4 Local moments. 

so that, for example, an axial strain of 0.01 in a 90" peel test gives a bending strain 
of 0.24, i .e. a substantial magnification. A limit on the elastic behaviour may also 
be ~ o m p u t e d ' ~ . ' ~  for the condition eB = e,,, the yield strain, which puts a severe con- 
straint on e. For example, for ey = 0.06, a typical value for polymers, e = 6 x 
and the maximum available G is given by G = Ehe, and for E = 3 GPa and h = 100 
p,m we have G = 180 J/m2. Typical adhesion tests give G values of several hundreds 
of J/m2 and are thus operating in the plastic region locally. 

It is instructive, at this stage, to consider the large displacement beam ~ o l u t i o n ' ~  
for the root region and this is conveniently couched in terms of the slope, +, so that 

dv dx sin+=--,  cos+=- and kk=L ds ds ds R 

where R is the radius of curvature, and s is the arc length of the beam. The moment 
at any point is 

M = P [(x, - x) sin 8 - (v, - v) cos 81 (15) 
where x, and v, are the coordinates of the load point, as shown in Figure 4. Since 
the deformation is elastic and predominantly bending, we have 

1 - 12M 
R Ebh3 

Differentiating equations (15) and (16) with respect to + and noting the relation- 
ships in equations (14), we have 

It is now important to consider what happens when the slope at the contact point 
is not zero but takes a value 8,. We may integrate equation (17) between the base 
with R = R, and + = 8, and the load region for which R = w and + = 8. Thus, 

2 
- 12p [ l - c o s ( 8 - 8 , ) ] = - [ ~ ]  1 12M 

2 e  Ebh3 2 Ebh 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
3
:
4
6
 
2
2
 
J
a
n
u
a
r
y
 
2
0
1
1



ROTATION AND PLASTIC WORK IN PEEL TEST 23 1 

i.e. 
2 - Ebh3 M, - -. P [I - cos (e - e,)] 6 

Note that if 8,= 0, then we retrieve equation (12) but, if not, then only a proportion 
of the energy is transmitted via bending, the rest going directly to the peeling 
process. The directly transmitted value of G, Go, is thus 

P 6Mz - P  
b Eb2h3 b G,=- (1 -COS e) [COS (e- e,) -COS el 

and if O,=O, G,=O, as expected. Note that if 8 =O,, then all the energy is directly 
transmitted and, of course, there is no bending. 

It is possible to estimate 8, since the section of the strip beyond the contact point 
acts as a beam on an elastic foundation formed by half the strip thi~kness. '~, '" . '~ This 
method has been used to correct composite beam data [e .g .  see Ref. 181 and good 
accuracy can be obtained by assuming that the beam is actually 213 h longer, as 
shown in Figure 5 .  At the root, 

and an expression for 8, can be deduced using equation (18), i . e .  

and equation (20) can be written as a ratio of G, to G, i .e.  

=COS (e - e,) - cos 8 
G i - cose  

Table I gives computed values for 8=90" showing how 8, varies with the tensile 
strain, e ,  and thus G, since 

FIGURE 5 Root rotation in the peel test 
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232 J .  G. WILLIAMS 

TABLE I 
0 = 90" 

eon 10 20 30 40 50 
e 3.5xlO-' 0.0175 0.052 0.128 0.306 

G"/G 0.174 0.342 0.500 0.643 0.766 

In the elastic case, of course, no energy is lost so the delivered G is that applied. 
An approximation to energy dissipation occurring in bending is simply to assume 
that only Go is available and this is a useful model of the highly work hardening 
case. True G values, i .e .  Go, can be found from determining e and hence GJG. 
For the numbers used earlier in this section, for example E = 3 GPa, h = 100 km, 
and if we assume a strain of 3 . 5 ~ 1 0 - ~  ( O , = l O O ) ,  then G=1050 J/m2 and Go= 
183 J/m2. 

4. LOCAL MOMENT ELASTIC-PLASTIC SOLUTIONS 

A better model of the energy dissipation process in bending the strip may be found 
by considering the behaviour of an elastic-perfectly plastic material for which 

a = E e  7 e-y 

and 

u=a ,=Ee ,  , e>ey 

If a beam is bent such that in the outer fibres e>ey, then the stress distribution is 
as shown in Figure 6 and the moment is given by 

where c is the depth of the elastic core region and M, = (b h3 Ee,)/4, the fully plastic 
maximum moment when c = 0. The radius of curvature can be defined in terms of 
the elastic core since 

U Y I  

FIGURE 6 Elastic-plastic stress distribution. 
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ROTATION AND PLASTIC WORK IN PEEL TEST 233 

and we may define R at first yield as 

h RI =- 
2% 

and hence 

where x is the elastic core or radius ratio. The curvature moment relationship for 
the elastic-plastic case is thus: 

(26) 
R1-1- 1 
R X V3(1-M/Mp)  

and the elastic form, equation (16), can be rewritten as 

(27) 
1=-=-- R 1 3 M  
R x 2 M p  

These relationships are shown in Figure 7 with equation (27) pertaining for l / x < l  
and equation (26) for l / x > l .  The work done per unit length of beam, W, is found 
from the area under this curve, OAA', and hence 

I l/x 

-<1 1 
, w=G I ( g j d ( i j = G ( & )  X 

0 

and 
l /x 

-> 1 1 , W = 3 + G I  ($1 d($) = G(1+ x 3  5 - 1) 
X 

I 

FIGURE 7 Moment curvature relationship for an elastic-perfectly plastic beam. 
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where 

J .  G .  WILLIAMS 

A Ehe: G=- 

the maximum elastic energy per unit length which can be stored in the beam. The 
energy which can be recovered on unloading the beam is the area BAA' in Fig- 
ure 7 and is 

2 

-<1 X 1 , W=G(&) 

and 

An elegant experiment is reported in Reference 6 which illustrates the utility of 
this analysis. Thin strips were bent through 180" between smooth parallel plates and 
the force required to draw one end continuously was measured. This is equivalent 
to a 180" peel test with zero G but a fixed radius of curvature given by the separation 
of the plates D=2R.  Assuming x< l ,  we have 

The results plus this function fitted with E = 5.1 GPa and ey = 0.018 are shown in 
Figure 8 and illustrate the general accuracy of the analysis. 

In the real peel test, R is not predetermined and is governed by G and leads to 
rather complex behaviour. This has been analysed in a series of excellent papers by 
Aravas and Kim.'9,20,21 They point out that in steady-state peeling, a moment, M,, 

FIGURE 8 Plastic bending force as a function of diameter, D = 2R. Data from Reference 6 .  
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ROTATION AND PLASTIC WORK IN PEEL TEST 235 

is applied at the root and that the strip unloads continuously as steady-state peeling 
proceeds until it is straight and R +a, i.e. 1/x=O. Thus, in the M/M, versus l / x  
diagram, the end point is always on the l / x  = O  axis. Two possible loading paths are 
shown in Figure 9(a). In (i), M, is applied from 0 to A at the root and then unloads 
elastically to B. There is, thus, always a residual curvature which must be taken out 
by an offset of P as shown in Figure 9(b). When the load is removed, the radius will 
return to B’ giving a residual curl in the strip. The energy per unit length dissipated 
in the process is thus OAB’B which is the second of equations (28) with the addition 
of the area OB‘B and subtracting the second of equations (29). The former is not 
available for propagation but is recovered on unloading. Thus, we have 

.. 1 2x W(, ,=G -+--1 
(3x2 3 i 

This behaviour will pertain until the unloading induces plastic unloading, as shown 
in line (ii) in Figure 9(a). The transition is at x =O.5 and, for x<O.5, the area OACD 
must be found and is” 

Note that for x e l  the dominant term is 2/x, the area of the rectangle 2 x l / x  in 
Figure 9. Also note that, for this condition, the residual radius of curvature tends 
to RI=h/2e, .  

The deformation of the strip during the unloading phase in case (i) is elastic and 
so equation (18) still applies and may be rewritten in terms of x as 

1 1 -G [ i-cos(e-o,)  
3x2 6 1-coso (33) 

For case (ii), part of the unloading is elastic-plastic and involves using equation (26); 
the result is”’: 

The G value delivered to the interface is now 

P 
b G,, = - (1 - cos e) - W(i),(,i) 

and we have the two cases 
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1 

0 

B 

I 
a) -1 

/ 
/ 

/ 
/ 

-4’ __-- 

b) 
FIGURE 9 Unloading in peeling: a) Unloading paths in peeling; b) Reverse bending in peel test 
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ROTATION AND PLASTIC WORK IN PEEL TEST 237 

As in the elastic case, we can find 8, via equation (21) 

Equations (35) and (36) can be solved by iteration for any value of G / G  to give 
G,/G, but a useful result for x + l  is 

= cos (e - 0,) - cos e 
G i - c o s e  

as in the elastic case, assuming all the bending energy is lost, and 

replacing equation (22). 
A set of data is shown in Figures 10 and 11. In Figure 10, GJG is shown as a 

function of G / G  using equations (35) and (36) for 0 = 90", 135" and 180". Also shown 
is the elastic solution given in Table I in which e is converted to G / G  via 

G-2e  

There is a very similar trend which indicates that the dominant effect is the almost 
total loss of energy in bending. Figure 11 shows the same data replotted as G/G,  
versus G/G, which models the effect of varying thickness for a constant G, via G/G, 
and measuring the resultant G value. There is a marked maximum which has been 
discussed but not predicted explicitly before. It is also clear from 
Figure 10 that if 8 is varied for given h and G, values, then G will increase with 8. 
As 8, -+8ey/3, G/G, + 1 so small angle peel tests, i.e. 8=10", give true values, 
while at 8 = 90" G is two to three times G, and at 0 = 180" it can be five to 10 times, 

- _ -  
G e; 

__ Elastic-plwtic solution 
30 7 

Elastic solution 0=90" 

e) = 0 03 

0 10 20 30 u) M 

G I 6  
EheZ 

FIGURE 10 Energy release rate at interface, G , ,  as a function of applied value G,  G = 3 2 
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238 J. G .  WILLIAMS 

Elastic solution 

e = 0.03 Y 

GIG, '1. 2 

0 1  . . . , , . .  , . . . , .  , . , . . . ( . . .  I . . . , . . . ,  
0 0  0 2  0 4  0 6  0 8  10 I 2  14 16 

&Go 

FIGURE 11 Applied G as a function of G for fixed G ,  

depending on thickness and eY. There have been many observations that there is 
such an effect in tests [e .g .  see Ref. 61 and the data reported show changes of the 
order given above. Rather careful analysis is required to determine if G, is indeed 
constant. If not, there may be a mixed-mode fracture effect but the analysis does 
indicate variations of the correct order. 

5. CONCLUSION 

The large displacement elastic analysis demonstrates the importance of the root 
rotation in determining the proportion of the applied energy which goes into 
bending and that which goes directly to the interface. The elastic-plastic analysis 
allows the dissipation to be more accurately computed but the crucial step in this 
analysis is the relationship between 8, and R,. That used assumes no adhesive 
thickness so that all the local deformation comes from the strip itself via the half 
thickness. The model may be extended to include the adhesive thickness, ha, and 
modulus, E,, via 

For anisotropic materials, the factor of 2/3 is increased." The utility of this has yet 
to be explored. 

It seems likely that the relationships given here will describe most of the experi- 
mental observations. 
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